Development of Thermal Conductivity Prediction System for Composites
نویسندگان
چکیده
منابع مشابه
Adaptive Neuro-Fuzzy Inference System for Prediction of Effective Thermal Conductivity of Polymer-Matrix Composites
In the present study, the adaptive neuro-fuzzy inference system (ANFIS) is developed for the prediction of effective thermal conductivity (ETC) of different fillers filled in polymer matrixes. The ANFIS uses a hybrid learning algorithm. The ANFIS is a class of adaptive networks that is functionally equivalent to fuzzy inference systems (FIS). The ANFIS is based on neuro-fuzzy model, trained wit...
متن کاملThermal Conductivity of Diamond Composites
A major problem challenging specialists in present-day materials sciences is the development of compact, cheap to fabricate heat sinks for electronic devices, primarily for computer processors, semiconductor lasers, high-power microchips, and electronics components. The materials currently used for heat sinks of such devices are aluminum and copper, with thermal conductivities of about 250 W/(m...
متن کاملDevelopment of AlN/Epoxy Composites with Enhanced Thermal Conductivity
AlN/epoxy composites with high thermal conductivity were successfully prepared by infiltrating epoxy into AlN porous ceramics which were fabricated by gelcasting of foaming method. The microstructure, mechanical, and thermal properties of the resulting composites were investigated. The compressive strengths of the AlN/epoxy composites were enhanced compared with the pure epoxy. The AlN/epoxy co...
متن کاملThermal conductivity enhancement of carbon fiber composites
The effective thermal conductivity enhancement of carbon fiber composites is investigated in this contribution using a three-dimensional numerical method. First a more realistic three-dimensional distribution of fibers dispersed in a matrix phase is reproduced by a developed random generation-growth method to eliminate the overrated inter-fiber contacts by the two-dimensional simulations. The e...
متن کاملMOF-5 composites exhibiting improved thermal conductivity
The low thermal conductivity of the prototype hydrogen storage adsorbent, metal-organic framework 5 (MOF-5), can limit performance in applications requiring rapid gas uptake and release, such as in hydrogen storage for fuel cell vehicles. As a means to improve thermal conductivity, we have synthesized MOF-5-based composites containing 1e10 wt.% of expanded natural graphite (ENG) and evaluated t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: MATERIALS TRANSACTIONS
سال: 2003
ISSN: 1345-9678,1347-5320
DOI: 10.2320/matertrans.44.629